
MATHEMATICA FOR RESEARCHERS

PER ALEXANDERSSON

Abstract. Introduction to Mathematica for graduate students.

1. Introduction

1.1. Becoming friends with Mathematica. The most important feature in
Mathematica is the F1 button, which brings you to the built-in documentation.
Pressing F1 while the line cursor is on a function, brings you to the documentation
about that particular function.

Notice that all Mathematica functions and options begin with a capital letter.
For example, e, i and π are denoted E, I and Pi.

1.2. Variables. Variables are used for storing data. Variables can be indexed,
and the index could be numbers, variables, strings or any data structure. Indexed
variables are called maps in other programming languages.

x = 5 ;

myVar [1] = 4+2;

myVar [Pi] = 3 . 4 ;

myVar [2 , 5 , 6] = 63 ;

myVar [z] = 77 ;

myVar [” f i r s t ”] = 20 ;

If a value has not been assigned to a variable, the variable is considered to be
undetermined or unknown. Unknowns are used when solving equations.

Once a value have been store in a variable, it can be “reset” to an undefined state
by using either variable =. or Clear[variable].

Notice that non-indexed variables which are undetermined appear in blue, while
variables to which a value is assigned appear in black text.

Version: Monday 25th August, 2014,21:09.

1

2 P. ALEXANDERSSON

1.3. Functions and modules. Every mathematician has an idea what a function
is. In Mathematica, it is a way to assign values to a variable according to some rule,
or pattern.

myFunction [x] = xˆ2 + 2 ;

Special cases for certain values may be added: Defining special cases of functions
can be done as follows:

s i n c [0] : = 1 ;

s i n c [x] :=Sin [x] / x ;

Notice that without the special case, sinc[0] would be undetermined.

There are ways to add constraints on the input, so that rules only apply if certain
conditions are met. For example, one can define functions that are only defined for
integers.

Functions are mainly used to encapsulate code, so that it can be reused multiple
times. Here is a definition of a function that takes two parameters:

myFunction [p , q] :=2p+q ;

You may call the function with both numbers and symbols:

myFunction [5 , 6]

myFunction [a , b+c]

More complicated functions might need intermediate steps. These should be
encapsulated by the Module command:

pqFormula [p , q] :=Module [{ pHalf , inRoot , theSquareRoot } ,

pHalf = p /2 ;

inRoot = pHalf ˆ2 − q ;

theSquareRoot = Sqrt [inRoot] ;

Return [−pHalf + theSquareRoot] ;

] ;

Local variables should be used as much as possible, to prevent undesired side-effects.
The Return statement is used to return the result from the module. To output
intermediate results in a Module, use the Print function. This is a useful tool for
finding errors.

1.4. Set versus SetDelayed. In Mathematica, the following code is literally in-
terpreted as Substitute all x on the right hand side, with the parameter provided,
and then simplify.

func [x] : = . . . ;

MATHEMATICA FOR RESEARCHERS 3

This is the SetDelayed way to define functions.

Using the = operator (Set) for assignment is on the other hand interpreted as
Simplify the right hand side once and for all, then substitute all x in the result when
a parameter is provided.

func [x] = . . . ;

Most of the time, there is no difference when the substitution occurs, but in some
not too rare cases, there is:

funcDer ivat iveBad [x] :=D[x ˆ2 , x] ;

funcDerivat iveGood [x]=D[x ˆ2 , x] ;

One can force Mathematica to evaluate sub-expressions, to make := work:

funcDer ivat iveF ixed [x] :=Evaluate [D[x ˆ2 , x]] ;

As a rule of thumb, stick with :=, if you are uncertain. This is closest to the behavior
in other programming languages.

1.5. Calling functions. There are various ways to call functions.

x = 2+3I ;

Re [x]

Re@x

x//Re

You should be familiar with the first way already. The second alternative is similar
to the mathematical f ◦ x notation, and the third one is called “piping”. Piping has
lower priority than @. These alternative forms are useful when applying multiple
one-argument functions:

HankelMatrix [4] // Inverse // MatrixForm // Print ;

Print @ MatrixForm @ Inverse @ HankelMatrix [4] ;

1.6. Recursion, memoization. Recursion is done as follows:

f i b [0] : = 0 ;

f i b [1] : = 1 ;

f i b [n] := f i b [n−1]+ f i b [n−2] ;

However, evaluating fib[40] takes a lot of time (fib[1] will be computed fib[40]

times, and so on). One can rewrite the function to store intermediate results as
follows:

f i b [0] : = 0 ;

f i b [1] : = 1 ;

f i b [n] := f i b [n] = f i b [n−1]+ f i b [n−2] ;

4 P. ALEXANDERSSON

Thus, each time we evaluate fib[n], Mathematica redefines fib[n] to a number
(the result of the computation). This is called memoization.

1.7. Comments on coding practice. Use comments that describe what and why
longer functions and code blocks do:

(∗ This i s a comment in mathematica ∗)

(∗
Comments may span over

s e v e r a l l i n e s , and can be used to t e m o r a r i l y remove code .

∗)

Name your functions and variables, to reflect their use. For example, Com-

plexListPlot clearly states what it does.

2. Operations on data structures

2.1. Creating lists. Lists are the backbone in every automated process. These are
used to store numbers, polynomials, functions, other lists etc. To construct a list,
simply use one of the following:

List [1 , 2 ,Pi , a , b , c]

{1 ,2 ,Pi , a , b , c}

There are ways to automatically create lists where each element depend on one
or more parameters:

Table [nˆ2 , {n , 1 , 1 0 }] (∗ F i r s t 10 squares o f n a t u r a l numbers ∗)

Table [Binomial [n , k] , {n ,1 , 10} ,{k , 1 , n }] (∗ Pascal ’ s t r i a n g l e ∗)

Many built-in functions return lists.

It is sometimes useful to create a list of lists1, or even more complex data
structures. For example, the following might represent a simplicial complex:

{{1} ,{2} ,{3} ,{1 ,2} ,{1 ,3}}

The following is a feature that is good to be aware of: {a,b}={2,3}; This assigns
the values 2 and 3 to the variables a and b respectively.

1Matrices are represented as a list of lists (rows).

MATHEMATICA FOR RESEARCHERS 5

2.2. Operations on lists. In many situations, one wish to do something with
every element in a list. To apply f on every element in list, simply use

Map[f , l i s t]

For example, this piece of code factors a list of polynomials

p o l yL i s t = Table [x ˆ(2n)−1 ,{n , 1 , 5 }] ;

Map[Factor , p o l y L i s t]

Factor /@ p o l yL i s t (∗ A l t e r n a t i v e l y ∗)

2.3. Anonymous functions. One may create anonymous functions by using # as
a placeholder for the argument, and & as the end of the definition. These are usually
small functions.

#ˆ2+4 &[5] (∗ This g i v e s 29 ∗)

A common task is to split a list of complex numbers, into a list of pairs of real
numbers, representing the real and imaginary part. By use of an anonymous function
and Map, this can be done in the following way:

complexList = {1+2I , 3−I , I , 5} ;

p o i n t L i s t = {Re@#, Im@#}& /@ complexList ;

2.4. Functions returning new functions. In some instances, it might be useful
to create new functions. For example, Mathematica returns functions as solutions to
differential equations, and functions that are used to solve various linear equations2.
The following example creates a function that differentiates the argument with
respect to x k times, and multiplies the result with mulfunc.

D i f f e r ent i a t eAndMul t ip ly [k , mulfunc] := mulfunc∗D[# ,{x , k }]] & ;

(∗ A l t e r n a t i v e l y ∗)

Di f f e r ent i a t eAndMul t ip ly [k , mulfunc] :=

Function [{ f } , mulfunc∗D[f ,{ x , k }]] ;

Example usage:

g = Di f f e r ent i a t eAndMul t ip ly [2 , x ˆ2+2] ;

g [x ˆ3] (∗ Returns 6x∗(2+x ˆ2) ∗)

2See LinearSolveFunction

6 P. ALEXANDERSSON

3. Solving equations and making substitutions

3.1. Solving equations. Equations are expressions involving ==, which is used as
equality sign. This way, one may store equations in variables as follows:

myEquation = Sin [t] + 2∗Cos [t] == Sin [2 t] ;

Solving equations is done by using Solve and NSolve:

Solve [x (xˆ2+4x+4)==0, x]

Solve [{ x∗y + 1 == 0 , x + y == 5} , {x , y }]

Solve gives exact answers while NSolve solves the equations numerically. Solve

and NSolve are used both for system of linear equations, as well as system of
non-linear equations. The output from these functions are a bit special, they are
lists of substitution rules.

Here is a slightly larger example that solves the following system of linear
equations: 

∑10
j=1(δ1,j + 1 + j)xj = 1∑10
j=1(δ2,j + 2 + j)xj = 2

. . .∑10
j=1(δ10,j + 10 + j)xj = 10

Here, δi,j is the Dirac delta function. Translating this into Mathematica yields

equat ions = Table [

Sum[(KroneckerDelta [k , j]+k+j) x [j] ,{ j ,1 ,10}]==k ,

{k , 1 , 1 0 }] ;

v a r i a b l e s = Table [x [j] , { j , 1 , 1 0 }] ;

Solve [equat ions , v a r i a b l e s]

Here, the variables x[1],x[2],...,x[10] are used as unknowns.

3.2. Substitution rules. A substitution rule represents a transformation, that
can be applied to expressions. The following line shows you how the rule {x->7,

y->a+b} is applied to an expression:

2x+3y+7 / . {x−>7, y−>a+b}
Replace [2 x+3y+7, {x−>7, y−>a+b }] (∗ A l t e r n a t i v e l y ∗)

The rule means Replace every x with 7, and every y with a+ b, and the /. operator
is a shorthand for the Replace function.

We may also have a list of substitution rules. Applying such list to an expression,
gives a list of expressions, where each element is the result of using rule i on the
initial expression.

MATHEMATICA FOR RESEARCHERS 7

r u l e s = {{x−>1}, {x−>2}, {x−>7}};
2x / . r u l e s (∗ Gives {2 , 4 , 14} ∗)

Consider the following code:

eqns = {xˆ2+yˆ2==1, x+y=1};
ans = Solve [eqns , {x , y }]

eqns / . ans

(∗ Output from the code above : ∗)

{{x−> 0 ,y−> 1} ,{x−> 1 ,y−> 0}}
{{True ,True} ,{True ,True}}

The first line defines a list of two equations, the second line solves the system. The
third line substitutes the list of solutions, (one by one) into the equations. As we
see from the output, there are two solutions, namely (x, y) = (0, 1) and (1, 0). Each
such solution makes both equations true, which explains the last line in the output.

Usually, one wishes to create a list of the solutions as pairs of numbers, if we
have an equation in 2 variables. This may be done as follows:

s o l u t i o n P a i r s = {x , y} / . NSolve [{ xˆ5+y==0, yˆ5−x==0},{x , y }]

There are plenty of uses of substitutions. The Chebyshev polynomials Tn(x) are
defined as Tn(cos θ) = cos(nθ). These polynomials may therefore be produced as
follows: Expand cos(nθ) in terms of sin θ and cos θ. Replace sinp(θ) by (1−cos(θ))p/2

and finally replace each occurrence of cos θ with x. In Mathematica:

Cheby [n , x] :=

Expand [

TrigExpand [Cos [n t]] / . { Sin [t] ˆ p −> (1−Cos [t] ˆ 2) ˆ (p/2)}
] / . {Cos [t]−>x}

There is also a substitution rule where the right hand side is evaluated after the
substitution have been used. These look like {x :> a+b}. Try the following:

{x , x , x} / . {x−>RandomReal [] }
{x , x , x} / . {x:>RandomReal [] }

In the first line, the right hand side is evaluated to a random number between 0 and
1, and then all the x in the left hand side are replaced with this number. The second
line produces a new random number each time the substitution is used. Compare
with = and :=.

3.3. Side note on equality. When you want to check if two things are really equal,
you have to use ===. This is to check if two unknowns are the exact expression or
not, and is guaranteed to evaluate to either True or False. In the first example
below, we have expressed an equation, which is true for some values of x and y. The
second example is to test if the two expressions are equal, which clearly is false.

8 P. ALEXANDERSSON

2x+y == 2x (∗ Example 1 ∗)

2x+y === 2x (∗ Example 2 ∗)

There is some rudimentary simplifications before comparing expressions, but do
not expect it to use things like basic trigonometric identities:

x+x === 2x (∗ True ∗)

Cos [x]ˆ2+Sin [x] ˆ2 === 1 (∗ False ∗)

Simplify [Cos [x]ˆ2+Sin [x] ˆ 2] === 1 (∗ True ∗)

4. Presenting output

Indexed variables are usually displayed with the square brackets. However, one
may transform such variables into a more visually pleasing form:

N i c i f y [expr] := expr / .{ var [i] :> Subscript [var , i] } ;

This changes expressions of the form a[i] to ai. Try this on Table[a[i],{i,1,10}].

4.1. Row, Column, Grid, etc. The Row command takes a list, and presents the
elements in a row. Similar goes for Column. These are useful for presenting lists in a
slightly nicer fashion. The Grid command can be used for presenting 2-dimensional
tables, and there are plenty of options available, for example background color and
frames. MatrixForm is used for displaying matrices as, well, matrices.

5. Graphics and data visualization

5.1. Plot and Plot3D. Plot and Plot3D are the two functions for plotting functions
of the form y = f(x) and z = f(x, y).

5.2. ParametricPlot, ParametricPlot3D. ParametricPlot is used to plot parametrized
curves and surfaces.

5.3. RegionPlot, ContourPlot. RegionPlot is used to plot regions where a certain
condition is true, for example f(x, y) > 0. This function generally gives good results
only when the set is 2-dimensional. For one-dimensional sets, use ContourPlot,
which is used for cases such as f(x, y) = g(x, y).

5.4. ListPlot. Use ListPlot when you want to plot a set of points in the plane, for
example, roots of equations.

5.5. GraphPlot. This method is used to plot graphs, such as the Petersen graph
or similar. There are several automatic options for the graph layout, as well as the
option to specify each vertex coordinate manually.

MATHEMATICA FOR RESEARCHERS 9

5.6. Graphics. Each graphical output from Mathematica is a Graphics (or Graph-
ics3D) object. This is essentially a sort of vector graphics format, and one can
manually create complex pictures by making a Graphics object. This is very useful
for making pictures related to exam problems, for example.

5.7. Useful options. Most Plot functions and Graphics objects have a vast number
of options. For example, the image size and aspect ratio can be specified as follows:

Plot [x ˆ2 ,{x ,−2 ,2} ,AspectRatio−>Automatic , ImageSize−>{480, 640}]

Specifying the aspect ratio to be Automatic means that the scales on the x axis
and the y axis are the same. The image size is the with and height of the image in
pixels.

In some cases, one wish to add some extra things to a Plot, such as a few points,
text, or similar. This is done using the Epilog option:

Plot [x ˆ2 , {x , −2, 2} , Epilog −> {
Purple , PointSize [0 . 0 2] , Point [{Sqrt [2] , 2}] ,

Black , Text [”The Point ” , {0 . 5 , 2}] ,

Blue , Arrow [{ { 0 . 8 , 2} , {1 . 3 , 2}}]

}]

This adds a purple, rather large point at (
√

2, 2), some black text, and a blue arrow
to the plot.

5.8. Exporting graphics. Exporting a graphics object to a file can be done with
the Export method. This will save the resulting image in your home folder.

g=Plot [x ˆ2 , {x , −2, 2} , ImageSize −> {480 , 6 4 0}] ;

Export [” f i l e name . eps ” , g] ;

Other file formats such as pdf, jpg, png and gif are supported.

6. A note on precision

Mathematica usually does numerical calculations using MachinePrecision, which
means a bit less than 16 decimals on a modern desktop. Thus, if you type for
example 3.14159265, it is assumed that you have this precision. This is suitable
for most operations. We may also use exact numbers like 5/9 or Pi.

Now consider this function:

thetaBad [q , x] :=

N[Sum[q ˆ(Binomial [j +1 ,2]) (−x)ˆ j , { j , 0 , 2 0 0 }]] ;

10 P. ALEXANDERSSON

This is a sum containing 200 small terms, when 0 < q < 1. The sum is then converted
using N to a decimal number with 16 digits. Plotting thetaBad[0.9,x] gives a graph
about to have a seizure, in Fig. 1. This is because Mathematica considers 0.9 and x
to have low precision, so the sum is computed using MachinePrecision. However, if
we provide rational arguments, the sum is evaluated with infinite precision. This
might give a very different result:

thetaBad [0 . 9 , 23] (∗ Gives 160610. ∗)

thetaBad [9/10 , 23] (∗ Gives −1.82292 ∗)

Using rational numbers is however a bit extreme and will be painfully slow to plot.
We therefore rewrite our function a little:

thetaGood [q , x] := N[

With [{
qq = SetPrecision [q , 6 0] ,

xx = SetPrecision [x , 60]} ,

Sum[qq ˆ(Binomial [j + 1 , 2]) (−xx)ˆ j , { j , 0 , 2 0 0 }]]] ;

We create two local variables, where we have forced an increase of precision to 60
digits. The sum will then be carried out using 60 digit precision, and the result
will as before be converted to MachinePrecision. The resulting graph is the nice
dashed one in Fig. 1.

15 20 25 30

- 2

- 1

1

2

Figure 1. Using different precision (q = 0.9).

MATHEMATICA FOR RESEARCHERS 11

7. Computer exercises

7.1. Functions and modules.

7.1.1. Exercise. Compare the two functions that emulates a dice toss:

diceOne [] : = RandomInteger [{ 1 , 6 }] ;

diceTwo []= RandomInteger [{ 1 , 6 }] ;

Find and explain the difference in behavior.

7.1.2. Exercise. Read on Wikipedia about Chebyshev polynomials. Define a recur-
sive function, cheby[n], that returns the n:th Chebyshev polynomial. Optimize by
using memoization and using Expand before returning the result.

7.2. Operations on lists and data structures.

7.2.1. Exercise. Run the following code and read in the documentation what the
functions used do:

l i s t = {9 , 1 , 1 , 3 , 5 , 3 , 6 , 7 , 9 , 9 , 9} ;

Length [l i s t]

Sort [l i s t]

Union [l i s t]

Gather [l i s t]

Tal ly [l i s t]

7.2.2. Exercise.

• Read the documentation on RandomInteger and create a list consisting of
20 lists of length 10, each containing random integers in [0, 100].
• Use Map, and Max to select the largest element from each sublist.
• Read the documentation on Map, and apply the anonymous function If[#>50,1,0]&

on every element in all the lists. Explain what the anonymous function do.

7.2.3. Exercise. Read the documentation for the various functions involved in the
code below.

complexList = RandomReal [{0 , 1} , 1 0] + I∗RandomReal [{ 0 , 1 } , 1 0] ;

Select [complexList , Im[#]>=0 &]

Write a function, that takes a list of complex numbers as an argument, and returns
the number of points in the list that lie inside the unit disk.

12 P. ALEXANDERSSON

7.2.4. Exercise. Read about the Tower of Hanoi game on Wikipedia. Design a data
structure that represents a sequence of moves that solves the problem. Write a
function, Hanoi[n_], that returns such a sequence for n initial disks.

Hint: write a function Hanoi[n_,start_,stop_], that returns a sequence that
moves a stack of n disks from pin start to stop. Also note that in order to move
n disks from A to C, one needs to move the n− 1 smaller disks from A to B, then
the nth disk from A to C, and finally the n− 1 smaller disks from B to C.

7.2.5. Exercise. A bit simplified, a Young tableau is a table consisting of non-empty,
left-justified rows, where the length is weakly decreasing downwards. The entries
are natural numbers, such that each row and column is non-decreasing. Construct a
suitable data structure for representing a Young tableau, and construct a method
that presents such a tableau graphically, see for example a picture of a standard
Young tableau on Wikipedia.

7.2.6. Exercise. The row insertion algorithm for Young tableaux is used to prove the
Robinson-Schensted correspondence. Let (r1, r2, . . . , rn) be the rows of the tableau.
A new element x is inserted via the following algorithm:

• If the tableu is empty, return a tableau with x as the only element.
• If x is not smaller than the last element in r1, append x to r1 return the

result.
• Otherwise, find the leftmost element x′ in r1 greater than x, replace x′ with
x in r1 and insert x′ in the subtableau (r2, r3, . . . , rn).

Notice that the third condition is a recursive call. The exercise is to implement this
algorithm in Mathematica. Example:

1 2 5 7
3 6 8
4
9

← 2 =

1 2 2 7
3 5 8
4 6
9

That is, inserting 2 into the left tableau yields the right one.

7.3. Equations and substitutions.

7.3.1. Exercise. Solve the following system of equations:
x2 + y2 = 1
y2 + xz = 1
z2 + x2 = 2y

MATHEMATICA FOR RESEARCHERS 13

7.3.2. Exercise. Define a function

GetBasisElement [x , d]

that returns the dth element in your favorite polynomial basis. Create a new function

ToNewBasis [poly , x , t]

that converts the input polynomial poly, in variable x, to a polynomial in the basis
defined by GetBasisElement, in the new variable t, where tk represents the kth
element in the new basis. For example, if GetBasisElement[x_,d_]:=HermiteH[d,
x]; we would have that

ToNewBasis [32 x ˆ5 , x , t] (∗ Returns 60 t + 20 t ˆ3 + t ˆ5 ∗)

This corresponds to the fact that

Simplify [

60∗HermiteH [1 , x]+

20∗HermiteH [3 , x]+

HermiteH [5 , x]]==32xˆ5

Hint: Read about CoefficientList and use a system of linear equations. Bonus
points if you create a function that reverses the operation:

FromNewBasis [60 t+20tˆ3+t ˆ5 , x , t] (∗ Should re turn 32 xˆ5 ∗)

7.4. Graphics and data presentation.

7.4.1. Exercise. A sequence of polynomials is defined as follows: P0(x) = 1, Pn(x) =
P ′n−1(x) − xPn−1(x). The zeros of Pj , j > 0 are all real. For 1 ≤ j ≤ 50, plot the
points (xij , j) where xij , 1 ≤ i ≤ j are the zeros of Pj .

7.4.2. Exercise. Reproduce Figure 2 in Mathematica, using Graphics. Tip: Read
about Line, Circle, Dotted and Text.

7.4.3. Exercise. Do the exercise about the Tower of Hanoi. Construct a data
structure that represents a partially solved problem, and a function that produces the
next state, given a move. Create a method that produces a graphical representation
of the steps needed to solve the Tower of Hanoi puzzle.

14 P. ALEXANDERSSON

v v

10

12

Figure 2. Graphics

7.4.4. Exercise. Let c ∈ C be a fixed number, for example i.

For each point z0 ∈ C, we may compute the iterations zn = z2
n−1 + c. We want

to measure how quickly this series diverges to ∞ or, if it converges to a cycle.

Thus, a function juliaValue with the following input and output is needed:

• Input: z0 and the constant c.
• Output: The number of iterations needed for |zn| to exceed 2, or 20 if
|z20| < 2.

Tip: Use the helper function

d o I t e r a t i o n [{ zn , n }] := {znˆ2 + c , n + 1} ;

together with NestWhile.

Now plot juliaValue for z = x + iy with −2 ≤ x, y ≤ 2 using DensityPlot.
Tip: Read about the options PlotPoints, PlotRange, ColorFunction to do im-
provements on the image.

7.4.5. Exercise. Consider S4, the set of permutations of {1, 2, 3, 4}. Define two
actions on S4, φ1 : (a, b, c, d) 7→ (b, a, c, d) and φ2 : (a, b, c, d) 7→ (d, a, b, c). Draw
the graph using GraphPlot where the elements in S4 are the vertices, and there
is an edge from σ1 to σ2 labeled j if φj(σ1) = σ2, for j = 1, 2. Conclude that the
group G generated by {φ1, φ2} acts transitively on S4. Is this true if we modify to
be φ2 : (a, b, c, d) 7→ (d, a, c, b)?

7.5. Finding linear recurrences.

MATHEMATICA FOR RESEARCHERS 15

7.5.1. Exercise. Given a list of variables and an integer d, create a function that
return all monomials of degree d involving the variables given.

Hint: How would you create all monomials of degree d, if you already have a list
of all monomials with degree d− 1?

7.5.2. Exercise. Given a list of polynomials in n variables, and integers k and d,
write a function that searches for a linear recurrence of length k where each coefficient
is a polynomial of degree at most d.

Notice that this is equivalent to solving

Pn −
n∑

i=1
PiQi = 0

where the Pis are the given polynomials and the Qis are the unknown polynomials.
Each unknown polynomial may be expressed as Qi =

∑
j mjcij where mj ranges

over all monomials of degree at most d. The equation

Pn −
n∑

i=1
PiQi = 0

can then be solved as a system of linear equations.

Note: Some recurrences yield more than one solution. You can force a unique
solution by using a longer list of known polynomials. For example, when searching
for a recursion of length 2, one might consider the union of all (linear) equations
below: 

P3 − (Q1P1 +Q2P2) = 0
P4 − (Q1P2 +Q2P3) = 0
P5 − (Q1P3 +Q2P4) = 0
. . .

Notice that this increases the number of equations, but the number of unknowns
remain the same.

7.6. Turing machine.

7.6.1. Exercise. Read on Wikipedia about Turing machines. Notice that a program
is a map from STATES × SYMBOLS to STATES × SYMBOLS × {−1, 1}.
Design a data structure that represents such a program.

7.6.2. Exercise. The program operates on a 1-dimensional infinite tape, which is an
infinite string of symbols. How would you represent such a tape in Mathematica?

16 P. ALEXANDERSSON

7.6.3. Exercise. Write the body to the following module:

runTuringProgram [in i tTape , i n i t S t a t e , program] := . . .

This function should initiate the tape according to the first parameter provided
(choose a suitable representation for describing the initial tape). The second param-
eter represents the initial state of the machine, and the last parameter is a Turing
program.

You may assume that all but finitely many entries on the tape are blank, or
zero, at the start of the program. The execution of the program should stop when
the terminal state is reached (HALT). In each step, print a representation of the
current state of the machine (state and a suitable portion of the tape).

E-mail address: per.w.alexandersson@gmail.com

	1. Introduction
	1.1. Becoming friends with Mathematica
	1.2. Variables
	1.3. Functions and modules
	1.4. Set versus SetDelayed
	1.5. Calling functions
	1.6. Recursion, memoization
	1.7. Comments on coding practice

	2. Operations on data structures
	2.1. Creating lists
	2.2. Operations on lists
	2.3. Anonymous functions
	2.4. Functions returning new functions

	3. Solving equations and making substitutions
	3.1. Solving equations
	3.2. Substitution rules
	3.3. Side note on equality

	4. Presenting output
	4.1. Row, Column, Grid, etc

	5. Graphics and data visualization
	5.1. Plot and Plot3D
	5.2. ParametricPlot, ParametricPlot3D
	5.3. RegionPlot, ContourPlot
	5.4. ListPlot
	5.5. GraphPlot
	5.6. Graphics
	5.7. Useful options
	5.8. Exporting graphics

	6. A note on precision
	7. Computer exercises
	7.1. Functions and modules
	7.2. Operations on lists and data structures
	7.3. Equations and substitutions
	7.4. Graphics and data presentation
	7.5. Finding linear recurrences
	7.6. Turing machine

